Monday, March 10, 2008

NSS, MSC, dan MSS

Network Switching Subsystem

Network Switching Subsystem, or NSS, is the component of a GSM system that carries out switching functions and manages the communications between mobile phones and the Public Switched Telephone Network. It is owned and deployed by mobile phone operators and allows mobile phones to communicate with each other and telephones in the wider telecommunications network. The architecture closely resembles a telephone exchange, but there are additional functions which are needed because the phones are not fixed in one location. Each of these functions handle different aspects of mobility management and are described in more detail below.

The Network Switching Subsystem, also referred to as the GSM core network, usually refers to the circuit-switched core network, used for traditional GSM services such as voice calls, SMS, and Circuit Switched Data calls.

There is also an overlay architecture on the GSM core network to provide packet-switched data services and is known as the GPRS core network. This allows mobile phones to have access to services such as WAP, MMS, and Internet access.

All mobile phones manufactured today have both circuit and packet based services, so most operators have a GPRS network in addition to the standard GSM core network.


Mobile Switching Center (MSC)


The Mobile Switching Center or MSC is the primary service delivery node for GSM, responsible for handling voice calls and SMS as well as other services (such as conference calls, FAX and circuit switched data). The MSC sets up and releases the end-to-end connection, handles mobility and hand-over requirements during the call and takes care of charging and real time pre-paid account monitoring.

In the GSM mobile phone system, in contrast with earlier analogue services, fax and data information is sent directly digitally encoded to the MSC. Only at the MSC is this re-coded into an "analogue" signal (although actually this will almost certainly mean sound encoded digitally as PCM signal in a 64-kbit/s timeslot, known as a DS0 in America).

There are various different names for MSCs in different contexts which reflects their complex role in the network, all of these terms though could refer to the same MSC, but doing different things at different times.

A Gateway MSC is the MSC that determines which visited MSC the subscriber who is being called is currently located. It also interfaces with the Public Switched Telephone Network. All mobile to mobile calls and PSTN to mobile calls are routed through a GMSC. The term is only valid in the context of one call since any MSC may provide both the gateway function and the Visited MSC function, however, some manufacturers design dedicated high capacity MSCs which do not have any BSSes connected to them. These MSCs will then be the Gateway MSC for many of the calls they handle.

The Visited MSC is the MSC where a customer is currently located. The VLR associated with this MSC will have the subscriber's data in it.

The Anchor MSC is the MSC from which a handover has been initiated. The Target MSC is the MSC toward which a Handover should take place. An MSC Server is a part of the redesigned MSC concept starting from 3GPP Release 5.


Mobile Switching Centre Server (MSS)

The Mobile Switching Centre Server or MSC Server is a soft switch variant of Mobile Switching Centre, which provides circuit-switched calling, mobility management, and GSM services to the mobile phones roaming within the area that it serves. MSC Server functionality enables split between control (signalling) and user plane (bearer in network element called as Media Gateway), which guarantees more optimal placement of network elements within the network.

MSC Server and MGW Media Gateway makes it possible to cross-connect circuit switched calls switched by using IP, ATM AAL2 as well as TDM.

More information is available in 3GPP TS 23.205.

Sumber : http://en.wikipedia.org/wiki/Network_Switching_Subsystem

BSS, BTS, dan BSC

Base Station Subsystem (BSS)

The Base Station Subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the Network Switching Subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, quality management of transmission and reception over the Air interface and many other tasks related to the radio network.

Base Transceiver Station

The Base Transceiver Station, or BTS, contains the equipment for transmitting and receiving of radio signals (transceivers), antennas, and equipment for encrypting and decrypting communications with the Base Station Controller (BSC). Typically a BTS for anything other than a picocell will have several transceivers (TRXs) which allow it to serve several different frequencies and different sectors of the cell (in the case of sectorised base stations). A BTS is controlled by a parent BSC via the Base Station Control Function (BCF). The BCF is implemented as a discrete unit or even incorporated in a TRX in compact base stations. The BCF provides an Operations and Maintenance (O&M) connection to the Network Management System (NMS), and manages operational states of each TRX, as well as software handling and alarm collection.

The functions of a BTS vary depending on the cellular technology used and the cellular telephone provider. There are vendors in which the BTS is a plain transceiver which receives information from the MS (Mobile Station) through the Um (Air Interface) and then converts it to a TDM ("PCM") based interface, the Abis, and sends it towards the BSC. There are vendors which build their BTSs so the information is preprocessed, target cell lists are generated and even intracell handover (HO) can be fully handled. The advantage in this case is less load on the expensive Abis interface.

The BTSs are equipped with radios that are able to modulate layer 1 of interface Um; for GSM 2G+ the modulation type is GMSK, while for EDGE-enabled networks it is GMSK and 8-PSK.

Antenna combiners are implemented to use the same antenna for several TRXs (carriers), the more TRXs are combined the greater the combiner loss will be. Up to 8:1 combiners are found in micro and pico cells only.

Frequency hopping is often used to increase overall BTS performance; this involves the rapid switching of voice traffic between TRXs in a sector. A hopping sequence is followed by the TRXs and handsets using the sector. Several hopping sequences are available, and the sequence in use for a particular cell is continually broadcast by that cell so that it is known to the handsets.

A TRX transmits and receives according to the GSM standards, which specify eight TDMA timeslots per radio frequency. A TRX may lose some of this capacity as some information is required to be broadcast to handsets in the area that the BTS serves. This information allows the handsets to identify the network and gain access to it. This signalling makes use of a channel known as the BCCH (Broadcast Control Channel).


Sectorisation

By using directional antennas on a base station, each pointing in different directions, it is possible to sectorise the base station so that several different cells are served from the same location. Typically these directional antennas have a beamwidth of 65 to 85 degrees. This increases the traffic capacity of the base station (each frequency can carry eight voice channels) whilst not greatly increasing the interference caused to neighboring cells (in any given direction, only a small number of frequencies are being broadcast). Typically two antennas are used per sector, at spacing of ten or more wavelengths apart. This allows the operator to overcome the effects of fading due to physical phenomena such as multipath reception. Some amplification of the received signal as it leaves the antenna is often used to preserve the balance between uplink and downlink signal.

Base Station Controller

The Base Station Controller (BSC) provides, classically, the intelligence behind the BTSs. Typically a BSC has 10s or even 100s of BTSs under its control. The BSC handles allocation of radio channels, receives measurements from the mobile phones, controls handovers from BTS to BTS (except in the case of an inter-BSC handover in which case control is in part the responsibility of the Anchor MSC). A key function of the BSC is to act as a concentrator where many different low capacity connections to BTSs (with relatively low utilisation) become reduced to a smaller number of connections towards the Mobile Switching Center (MSC) (with a high level of utilisation). Overall, this means that networks are often structured to have many BSCs distributed into regions near their BTSs which are then connected to large centralised MSC sites.

The BSC is undoubtedly the most robust element in the

BSS as it is not only a BTS controller but, f

or some vendors, a full switching center, as well as an SS7 node with connections to the MSC and SGSN (when using GPRS). It also provides all the required data to the Operation Support Subsystem (OSS) as well as to the performance measuring centers.

A BSC is often based on a distributed computing architecture, with redundancy applied to critical functional units to ensure availability in the event of fault conditions. Redundancy often extends beyond the BSC equipment itself and is commonly used in the power supplies and in the transmission equipment providing th

e A-ter interface to PCU.

The databases for all the sites, including information such

as carrier frequencies, frequency hopping lists, power reduction levels, receiving levels for cell border calculation, are stored in the BSC. This data is obtained directly from radio planning engineering which involves modellin

g of the signal propagation as well as traffic projections.


Transcoder

Although the Transcoding (compressing/decompressing) function is as standard defined as a BSC function, there are several ven
dors which have implemented the solution in a stand-alone rack using a proprietary interface. This subsystem is also referred to as the TRAU (Transcoder and Rate Adaptation Unit). The transcoding function converts the voice channel coding between the GSM (Regular Pulse Excited-Long Term Prediction, also known as RPE-L PC) coder and the CCITT standard PCM (G.711 A-law or u-law). Since the PCM coding is 64 kbit/s and the GSM coding is 13 kbit/s, this also involves a buffering function so that PCM 8-bit words can be recoded to construct GSM 20 ms traffic blocks, to compress voice channels from the 64 kbit/s PCM standard to the 13 kbit/s rate used on the air interface. Som e networks use 32 kbit/s ADPCM on the terrestrial side of the network instead of 64 kbit/s PCM and the TRAU converts accordingly. When the traffic is not voice but data such as fax or email, the TRAU enables its Rate Adaptation Unit function to give compatibility between the BSS data rates and the MSC capability.

However, at least in Siemens' and Nokia's architecture, the Transcoder is an identifiable separate sub-system which will normally be co-located with the M

SC. In some of Ericsson's systems it is

integrated to the MSC rather than the BSC. The reason for these designs is that if the compression of voice channels is done at the site of the MSC, fixed transmission link costs can be reduced.

Packet Control Unit

The Packet Control Unit (PCU) is a l
ate addition to the GSM standard. It performs some of the processing tasks of the BSC, but for packet data. The allocation of channels between voice and data is controlled by the base station, but once a channel is allocated to the PCU, the PCU takes full control over that channel.

The PCU can be built into the base station, built into the BSC or even, in some proposed architectures, it can be at the SGSN site.


BSS interfaces
  • Um – The air interface between the MS (Mobile Station) and the BTS. This interface uses LAPDm protocol for signaling, to cond uct call control, measurement reporting, Handover, Power control, Authentication, Authorization, Locati on Update and so on. Traffic and Signaling are sent in bursts of 0.577 ms at intervals of 4.615 ms, to form data blocks each 20 ms.

  • Abis – The interface between the Base Transceiver Station and Base Station Controller. Generally carried by a DS-1, ES-1, or E1 TDM circuit. Uses TDM subchannels for traffic (TCH), LAPD protocol for BTS supervision and telecom signaling, and carries synchronization from the BSC to the BTS and MS.
  • A – The interface between the BSC and Mobile Switching Center. It is used for carrying Traffic channels and the BSSAP user part of the SS7 stack. Although there are usually transcoding units between BSC and MSC, the signaling communication takes place between these two ending points and the transcoder unit doesn't touch the SS7 information, only the voice or CS data are transcoded or rate adapted.
  • Ater – The interface between the Base Station Controller and Transcoder. It is a proprietary interface whose name depends on the vendor (for example Ater by Nokia), it carries the A interface information from the BSC leaving it untouched.
  • Gb – Connects the BSS to the Serving GPRS Support Node (SGSN) in the GPRS Core Network.

Sumber : http://en.wikipedia.org/wiki/Base_Station_Subsystem

Sunday, March 9, 2008

MENGENAL GSM

Komunikasi bergerak (mobile communication) mulai dirasakan perlu sejak orang semakin sibuk pergi ke sana kemari dan memerlukan alat telekomunikasi yang siap dipakai sewaktu-waktu di mana saja ia berada. Kebutuhan ini ternyata tidak dibiarkan begitu saja oleh para engineer telekomunikasi. Mereka telah memikirkan standardisasi untuk komunikasi bergerak ini, salah satunya adalah GSM (Global System for Mobile communications)

Alokasi spektrum frekuensi untuk GSM awalnya dilakukan pada tahun 1979. Spektrum ini terdiri atas dua buah sub-band masing-masing sebesar 25MHz, antara 890MHz - 915MHz dan 935MHz - 960MHz. Sebuah sub-band dialokasikan untuk frekuensi uplink dan sub-band yang lain sebagai frekuensi downlink.

Karena konsekuensi logis dari kenaikan redaman atas kenaikan frekuensi, biasanya sub-band terendah dipakai untuk uplink, agar daya yang ditransmisikan oleh MS (mobile system atau lebih dikenal handphone) ke BTS (Base Transmitter Station yaitu seperti sentral telepon di PSTN/POTS, namun memiliki fungsi lebih) tidak perlu besar. Kalau digunakan sub-band yang satu lagi, mungkin anda perlu melakukan recharge batere handphone berulang kali untuk mendapatkan kualitas sama dengan saat ini.

GambarKemudian kedua sub-band tersebut dibagi lagi menjadi kanal-kanal, sebuah kanal pada satu sub-band memiliki pasangan dengan sebuah kanal pada sub-band yang lain. Tiap sub-band dibagi menjadi 124 kanal, yang kemudian masing-masing diberi nomor yang dikenal sebagai ARFCN (Absolute Radio Frequency Channel Number). Jadi sebuah MS yang dialokasikan pada sebuah ARFCN akan beroperasi pada satu frekuensi untuk mengirim dan satu frekuensi untuk menerima sinyal.

Untuk GSM, jarak antar pasangan dengan ARFCN sama selalu 45MHz, dan bandwidth tiap kanal sebesar 200kHz. Kanal pada tiap awal sub-band digunakan sebagai guard band. Silakan anda hitung, maka spektrum GSM akan menghasilkan 124 ARFCN, masing-masing diberi nomor 1 sampai 124. Kanal sebanyak 124 inilah yang nantinya dibagi-bagi buat operator-operator GSM yang ada di suatu negara.

Untuk mengantisipai perkembangan jaringan di masa mendatang, telah dilokasikan tambahan 10MHz frekuensi pada masing-masing awal sub-band. Ini dikenal sebagai EGSM (Extended GSM). Jadi spektrum EGSM ini 880MHz - 915MHz buat uplink dan 925MHz - 960MHz buat downlink. Hal tersebut memberi tambahan 50 ARFCN menjadi 174. Tambahan ARFCN ini diberi nomor 975 - 1023.

DCS 1800

Seiring dengan evolusi GSM, diputuskan untuk menerapkan teknologi ini pada PCN (Personal Communication Networks). Hal ini membutuhkan perubahan pada interafce udara untuk memodifikasi frekuensi operasinya. Frekuensi modifikasinya antara 1710MHz - 1785MHz untuk uplink dan 1805MHz - 1880MHz untuk downlink. Teknik ini menyediakan 374 ARFCN dengan pemisahan frekuensi sebesar 95MHz antara uplink dan downlink.

Teknik PCN ini dikembangkan di Eropa, khususnya di Inggris. Di Inggris (Raya) ARFCN ini telah dibagi-bagi antara keempat operator jaringan yang ada di sana. Dua di antaranya, Orange dan One to One, beroperasi pada daerah GSM 1800, sementara dua yang lainnya, Vodafone dan Cellnet, telah dialokasikan kanal GSM 1800 pada puncak jaringan GSM 900 mereka. ARFCN ini diberi nomor 512 - 885. Porsi pada puncak band digunakan oleh DECTs (Digital Enhanced Cordless Telephony).

PCS 1900

PCS 1900 merupakan adaptasi GSM yang lain ke dalam band 1900MHz. Teknik ini digunakan di Amerika Serikat di mana FCC (Federal Communication Commission) telah membaginya menjadi 300 ARFCN dan mengumumkan lisensi pada berbagai macam operator untuk mengimplementasikan jaringan GSM. Pemisahan frekuensinya sebesar 80MHz, dan pembagian frekuensinya adalah 1850MHz - 1910MHz untuk uplink dan 1930MHz - 1990MHz untuk downlink.

Teknik Modulasi dan Bandwidth

Teknik modulasi yang digunakan pada GSM adalah GMSK (Gaussian Minimum Shift Keying). Teknik ini bekerja dengan melewatkan data yang akan dimodulasikan melalui Filter Gaussian. Filter ini menghilangkan sinyal-sinyal harmonik dari gelombang pulsa data dan menghasilkan bentuk yang lebih bulat pada ujung-ujungnya. Jika hasil ini diaplikasikan pada modulator fasa, hasil yang didapat adalah bentuk envelope yang termodifikasi (ada sinyal pembawa). Bandwidth envelope ini lebih sempit dibandingkan dengan data yang tidak dilewatkan pada filter gaussian.

Bandwidth yang dialokasikan untuk tiap frekuensi pembawa pada GSM adalah sebesar 200kHz. Pada kenyataannya, bandwidth sinyal tersebut lebih besar dari 200kHz, bahkan setelah dilakukan pemfilteran gaussian pun hal itu tetap terjadi. Akibatnya sinyal akan memasuki kanal-kanal di sebelahnya. Jika pada satu sel (akan dijelaskan kemudian) terdapat BTS dengan frekuensi pembawa yang sama atau bersebelahan kanal, maka akan terjadi interferensi akibat overlapping tersebut. Begitu juga jika sel-sel yang bersebelahan memiliki frekuensi pembawa sama atau berdekatan. Alasan inilah yang menyebabkan mengapa dalam satu sel atau antara sel-sel yang berdekatan tidak boleh menggunakan kanal yang sama atau berdekatan.

Pembagian Sel

Pembagian area dalam kumpulan sel-sel merupakan prinsip penting GSM sebagai sistem telekomunikasi selular. Sel-sel tersebut dimodelkan sebagai bentuk heksagonal seperti pada gambar berikut. Tiap sel mengacu pada satu frekuensi pembawa / kanal / ARFCN tertentu. Pada kenyataannya jumlah kanal yang dialokasikan terbatas, sementara jumlah sel bisa saja berjumlah sangat banyak. Untuk memenuhi hal ini, dilakukan teknik pengulangan frekuensi (frequency re-use). Pada gambar terlihat contoh frequency re-use dengan jumlah kanal 7 buah. Antara sel-sel yang berdekatan frekuensi yang digunakan tidak boleh bersebelahan kanal atau bahkan sama.

Jelas bahwa semakin besar jumlah himpunan kanal, semakin sedikit jumlah kanal tersedia per sel dan oleh karenanya kapasitas sistem menurun. Namun, peningkatan jumlah himpunan kanal menyebabkan jarak antara sel yang berdekatan kanal semakin jauh, dan ini mengurangi resiko terjadi interferensi. Sekali lagi, desain sistem GSM memerlukan kompromi antara kualitas dan kapasitas.

GambarPada kenyataannya, model satu sel dengan satu kanal transceiver (TRx, tentunya menggunakan antena omni-directional) jarang digunakan. Untuk lebih meningkatkan kapasitas dan kualitas, desainer melakukan teknik sektorisasi. Prinsip dasar sektorisasi ini adalah membagi sel menjadi beberapa bagian (biasanya 3 atau 6 bagian; dikenal dengan sektorisasi 120o atau 30o). Tiap bagian ini kemudian menjadi sebuah BTS (Base Transceiver Station). Kebanyakan vendor memperbolehkan sampai dengan 4 TRx per BTS untuk sektorisasi 120o. Jika digunakan TDMA pada TRx, menghasilkan 8 kanal TDMA tiap TRx, Anda bisa menghitung bahwa dalam satu sel dapat menampung trafik yang setara dengan 3 X 4 X 8 = 96 kanal TDMA atau sebesar 82,42 erlang dengan GoS 2%. (Erlang merupakan satuan trafik dan GoS(Grade of Service) menyatakan derajat keandalan layanan, berapa jumlah blocking yang terjadi terhadap panggilan total)

Pada prakteknya tidak semua kanal TDMA tersebut bisa digunakan untuk kanal pembicaraan (TCH = Traffic Channel). Dalam sebuah BTS juga diperlukan SDCCH (Stand-alone Dedicated Control Channel) yang digunakan untuk call setup dan location updating serta BCCH (Broadcast Control Channel) yang merupakan kanal downlink yang memberikan informasi dari BTS ke MS mengenai jaringan, sel yang kedatangan panggilan, dan sel-sel di sekitarnya.

Struktur Sistem Selular

Bagian paling rendah dari sistem GSM adalah MS (Mobile Station). Bagian ini berada pada tingkat pelanggan dan portable. Pada tiap sel terdapat BTS (Base Transceiver Station). BTS ini fungsinya sebagai stasiun penghubung dengan MS. Jadi, merupakan sistem yang langsung berhubungan dengan handphone Anda.

BTS pada dasarnya hanya merupakan "pesuruh" saja. Otak yang mengatur lalu-lintas trafik di BTS adalah BSC (Base Station Controller). Location Updating, penentuan BTS dan proses handover pada percakapan ditentukan oleh BSC ini. Beberapa BTS pada satu region diatur oleh sebuah BSC.

BSC-BSC ini dihubungkan dengan MSC (Mobile Switching Center). MSC merupakan pusat penyambungan yang mengatur jalur hubungan antar BSC maupun antara BSC dan jenis layanan telekomunikasi lain (PSTN, operator GSM lain, AMPS, dll).Saat ini teknik switching terus berkembang, dan begitu pula pada layanan GSM. Beberapa operator GSM di Indonesia telah menerapkan Intelegent Network lanjutan dalam teknik switchingnya.


Frequency Hopping


Frequency hopping merupakan fitur yang diterapkan pada interface udara, yakni lintasan radio ke MS. Teknik ini dapat mengurangi redaman akibat efek multipath fading. GSM hanya merekomendasikan satu jenis frequency hopping, yakni baseband hopping. Namun beberapa vendor, seperti Motorola, menyediakan tipe frequency hopping yang lain, yang disebut Synthesizer Hopping.

Baseband Hopping digunakan jika base station memiliki beberapa DRCU/TCU tersedia. Aliran data secara sederhana dilalukan pada frekuensi dasar ke berbagai macam DRCU/TCU. Setiap data beroperasi pada frekuensi yang tetap, mengacu pada urutan hopping yang ditentukan. DRCU/TCU yang berbeda akan menerima sebuah timeslot yang spesifik pada setiap frame TDMA, berisi informasi yang ditujukan kepada MS-MS yang berbeda.

Synthesizer Hopping menggunakan kelincahan ferkuensi dari DRCU/TCU untuk mengubah frekuensi-frekuensi pada sebuah basis timeslot untuk transmisi maupun menerima. SCB pada DRCU serta sistem kontrol dan pemrosesan digital pada TCU akan menghitung dan menentukan frekuensi selanjutnya, dan memprogram sebuah pasangan synthesizer Tx dan Rx untuk menuju ke frekuensi yang telah dihitung.

Teknik synthesizer hopping ini sangat baik untuk diterapkan pada sel-sel dengan jumlah carrier yang sedikit. Untuk sel-sel dengan jumlah carrier yang banyak, teknik baseband hopping merupakan teknik yang paling baik. Dan kedua teknik ini tidak bisa diterapkan sekaligus pada sebuah site BTS.

Sumber : http://cahbuton.tripod.com/id16.html

PERBANDINGAN VLAN DAN LAN

A.Perbandingan Tingkat Keamanan

Penggunaan LAN telah memungkinkan semua komputer yang terhubung dalam jaringan
dapat bertukar data atau dengan kata lain berhubungan. Kerjasama ini semakin
berkembang dari hanya pertukaran data hingga penggunaan peralatan secara bersama
(resource sharing atau disebut juga hardware sharing).10 LAN memungkinkan data
tersebar secara broadcast keseluruh jaringan, hal ini akan mengakibatkan mudahnya
pengguna yang tidak dikenal (unauthorized user) untuk dapat mengakses semua
bagian dari broadcast. Semakin besar broadcast, maka semakin besar akses yang
didapat, kecuali hub yang dipakai diberi fungsi kontrol keamanan.

VLAN yang merupakan hasil konfigurasi switch menyebabkan setiap port switch
diterapkan menjadi milik suatu VLAN. Oleh karena berada dalam satu segmen,
port-port yang bernaung dibawah suatu VLAN dapat saling berkomunikasi langsung.
Sedangkan port-port yang berada di luar VLAN tersebut atau berada dalam
naungan VLAN lain, tidak dapat saling berkomunikasi langsung karena VLAN tidak
meneruskan broadcast.

VLAN yang memiliki kemampuan untuk memberikan keuntungan tambahan dalam
hal keamanan jaringan tidak menyediakan pembagian/penggunaan media/data
dalam suatu jaringan secara keseluruhan. Switch pada jaringan menciptakan
batas-batas yang hanya dapat digunakan oleh komputer yang termasuk dalam
VLAN tersebut. Hal ini mengakibatkan administrator dapat dengan mudah
mensegmentasi pengguna, terutama dalam hal penggunaan media/data yang
bersifat rahasia (sensitive information) kepada seluruh pengguna jaringan
yang tergabung secara fisik.

Keamanan yang diberikan oleh VLAN meskipun lebih baik dari LAN,belum menjamin
keamanan jaringan secara keseluruhan dan juga belum dapat dianggap cukup
untuk menanggulangi seluruh masalah keamanan .VLAN masih sangat memerlukan
berbagai tambahan untuk meningkatkan keamanan jaringan itu sendiri seperti
firewall, pembatasan pengguna secara akses perindividu, intrusion detection,
pengendalian jumlah dan besarnya broadcast domain, enkripsi jaringan, dsb.

Dukungan Tingkat keamanan yang lebih baik dari LAN inilah yang dapat
dijadikan suatu nilai tambah dari penggunaan VLAN sebagai sistem jaringan.
Salah satu kelebihan yang diberikan oleh penggunaan VLAN adalah kontrol
administrasi secara terpusat, artinya aplikasi dari manajemen VLAN dapat
dikonfigurasikan, diatur dan diawasi secara terpusat, pengendalian broadcast
jaringan, rencana perpindahan, penambahan, perubahan dan pengaturan akses
khusus ke dalam jaringan serta mendapatkan media/data yang memiliki fungsi
penting dalam perencanaan dan administrasi di dalam grup tersebut semuanya
dapat dilakukan secara terpusat. Dengan adanya pengontrolan manajemen
secara terpusat maka administrator jaringan juga dapat mengelompokkan
grup-grup VLAN secara spesifik berdasarkan pengguna dan port dari switch
yang digunakan, mengatur tingkat keamanan, mengambil dan menyebar data
melewati jalur yang ada, mengkonfigurasi komunikasi yang melewati switch,
dan memonitor lalu lintas data serta penggunaan bandwidth dari VLAN saat
melalui tempat-tempat yang rawan di dalam jaringan.

B.Perbandingan Tingkat Efisiensi

Untuk dapat mengetahui perbandingan tingkat efisiensinya maka perlu di
ketahui kelebihan yang diberikan oleh VLAN itu sendiri diantaranya:

•Meningkatkan Performa Jaringan
LAN yang menggunakan hub dan repeater untuk menghubungkan peralatan
komputer satu dengan lain yang bekerja dilapisan physical memiliki
kelemahan, peralatan ini hanya meneruskan sinyal tanpa memiliki
pengetahuan mengenai alamat-alamat yang dituju. Peralatan ini juga
hanya memiliki satu domain collision sehingga bila salah satu port
sibuk maka port-port yang lain harus menunggu. Walaupun peralatan
dihubungkan ke port-port yang berlainan dari hub.

Protokol ethernet atau IEEE 802.3 (biasa digunakan pada LAN) menggunakan
mekanisme yang disebut Carrier Sense Multiple Accsess Collision Detection
(CSMA/CD) yaitu suatu cara dimana peralatan memeriksa jaringan terlebih
dahulu apakah ada pengiriman data oleh pihak lain. Jika tidak ada
pengiriman data oleh pihak lain yang dideteksi, baru pengiriman data dilakukan.
Bila terdapat dua data yang dikirimkan dalam waktu bersamaan,
maka terjadilah tabrakan (collision) data pada jaringan. Oleh sebab itu
jaringan ethernet dipakai hanya untuk transmisi half duplex, yaitu pada
suatu saat hanya dapat mengirim atau menerima saja.

Berbeda dari hub yang digunakan pada jaringan ethernet (LAN), switch yang
bekerja pada lapisan datalink memiliki keunggulan dimana setiap port
didalam switch memiliki domain collision sendiri-sendiri. Oleh sebab
itu sebab itu switch sering disebut juga multiport bridge. Switch
mempunyai tabel penterjemah pusat yang memiliki daftar penterjemah untuk
semua port. Switch menciptakan jalur yang aman dari port pengirim dan
port penerima sehingga jika dua host sedang berkomunikasi lewat jalur
tersebut, mereka tidak mengganggu segmen lainnya. Jadi jika satu port
sibuk, port-port lainnya tetap dapat berfungsi.

Switch memungkinkan transmisi full-duplex untuk hubungan ke port dimana
pengiriman dan penerimaan dapat dilakukan bersamaan dengan penggunakan
jalur tersebut diatas. Persyaratan untuk dapat mengadakan hubungan
full-duplex adalah hanya satu komputer atau server saja yang dapat dihubungkan
ke satu port dari switch. Komputer tersebut harus memiliki network card
yang mampu mengadakan hubungan full-duflex, serta collision detection
dan loopback harus disable.

Switch pula yang memungkinkan terjadinya segmentasi pada jaringan atau
dengan kata lain switch-lah yang membentuk VLAN.Dengan adanya segmentasi
yang membatasi jalur broadcast akan mengakibatkan suatu VLAN tidak dapat
menerima dan mengirimkan jalur broadcast ke VLAN lainnya. Hal ini secara
nyata akan mengurangi penggunaan jalur broadcast secara keseluruhan,
mengurangi penggunaan bandwidth bagi pengguna, mengurangi kemungkinan
terjadinya broadcast storms (badai siaran) yang dapat menyebabkan
kemacetan total di jaringan komputer.

Administrator jaringan dapat dengan mudah mengontrol ukuran dari jalur
broadcast dengan cara mengurangi besarnya broadcast secara keseluruhan,
membatasi jumlah port switch yang digunakan dalam satu VLAN serta jumlah
pengguna yang tergabung dalam suatu VLAN.

•Terlepas dari Topologi Secara Fisik

Jika jumlah server dan workstation berjumlah banyak dan berada di lantai
dan gedung yang berlainan, serta dengan para personel yang juga tersebar
di berbagai tempat, maka akan lebih sulit bagi administrator jaringan
yang menggunakan sistem LAN untuk mengaturnya, dikarenakan akan banyak
sekali diperlukan peralatan untuk menghubungkannya. Belum lagi apabila
terjadi perubahan stuktur organisasi yang artinya akan terjadi banyak
perubahan letak personil akibat hal tersebut.

Permasalahan juga timbul dengan jaringan yang penggunanya tersebar di
berbagai tempat artinya tidak terletak dalam satu lokasi tertentu secara
fisik. LAN yang dapat didefinisikan sebagai network atau jaringan sejumlah
sistem komputer yang lokasinya terbatas secara fisik, misalnya dalam satu
gedung, satu komplek, dan bahkan ada yang menentukan LAN berdasarkan jaraknya
sangat sulit untuk dapat mengatasi masalah ini.

Sedangkan VLAN yang memberikan kebebasan terhadap batasan lokasi secara
fisik dengan mengijinkan workgroup yang terpisah lokasinya atau berlainan
gedung, atau tersebar untuk dapat terhubung secara logik ke jaringan
meskipun hanya satu pengguna. Jika infrastuktur secara fisik telah
terinstalasi, maka hal ini tidak menjadi masalah untuk menambah port
bagi VLAN yang baru jika organisasi atau departemen diperluas dan tiap
bagian dipindah. Hal ini memberikan kemudahan dalam hal pemindahan personel,
dan tidak terlalu sulit untuk memindahkan pralatan yang ada
serta konfigurasinya dari satu tempat ke tempat lain.Untuk para pengguna
yang terletak berlainan lokasi maka administrator jaringan hanya perlu
menkofigurasikannya saja dalam satu port yang tergabung dalam satu VLAN
yang dialokasikan untuk bagiannya sehingga pengguna tersebut dapat bekerja
dalam bidangnya tanpa memikirkan apakah ia harus dalam ruangan yang sama
dengan rekan-rekannya.

Hal ini juga mengurangi biaya yang dikeluarkan untuk membangun suatu
jaringan baru apabila terjadi restrukturisasi pada suatu perusahaan,
karena pada LAN semakin banyak terjadi perpindahan makin banyak pula
kebutuhan akan pengkabelan ulang, hampir keseluruhan perpindahan dan
perubahan membutuhkan konfigurasi ulang hub dan router.

VLAN memberikan mekanisme secara efektif untuk mengontrol perubahan ini
serta mengurangi banyak biaya untuk kebutuhan akan mengkonfigurasi ulang
hub dan router. Pengguna VLAN dapat tetap berbagi dalam satu network
address yang sama apabila ia tetap terhubung dalam satu swith port yang
sama meskipun tidak dalam satu lokasi. Permasalahan dalam hal perubahan
lokasi dapat diselesaikan dengan membuat komputer pengguna tergabung
kedalam port pada VLAN tersebut dan mengkonfigurasikan switch pada VLAN
tersebut.

•Mengembangkan Manajemen Jaringan

VLAN memberikan kemudahan, fleksibilitas, serta sedikitnya biaya yang
dikeluarkan untuk membangunnya. VLAN membuat jaringan yang besar lebih
mudah untuk diatur manajemennya karena VLAN mampu untuk melakukan
konfigurasi secara terpusat terhadap peralatan yang ada pada lokasi
yang terpisah. Dengan kemampuan VLAN untuk melakukan konfigurasi
secara terpusat, maka sangat menguntungkan bagi pengembangan manajemen
jaringan.

Dengan keunggulan yang diberikan oleh VLAN maka ada baiknya bagi
setiap pengguna LAN untuk mulai beralih ke VLAN. VLAN yang merupakan
pengembangan dari teknologi LAN ini tidak terlalu banyak melakukan
perubahan, tetapi telah dapat memberikan berbagai tambahan pelayanan
pada teknologi jaringan.

REFERENSI

1. [Tutang dan Kodarsyah, S.Kom], Belajar Jaringan Sendiri, Medikom
Pustaka Mandiri, Jakarta , 2001.
2. [Tanutama, Lukas dan Tanutama, Hosea] , Mengenal Local Area Network,
PT Elex Media Komputindo,Jakarta, 1992.
3. [Wijaya, Ir. Hendra] , Belajar Sendiri Cisco Router, PT Elex
Media komputindo, Jakarta, 2001.
4. [Purbo, Onno W, Basmalah, Adnan, Fahmi, Ismail,dan Thamrin, Achmad Husni]
, Buku Pintar Internet TCP/IP, PT Elex Media Komputindo,Jakarta 1998.
5. [IEEE], “Draft Standard for Virtual Bridge Local Area Networks,”
P802.1Q/D1, May 16, 1997
6. [Heywood, Drew], Konsep dan Penerapan Microsoft TCP/IP, Pearson Education
Asia Pte. Ltd dan Penerbit Andi Yogyakarta, 2000.
7. [Pleeger, Charless P], Security In Computing, Prentice Hall,1989.
8. [Sudibyono, ir. Agt Hanung], Instalasi dan Aplikasi Netware Novell,
Andi Offset,1992.
9. [Jogiyanto, HM]. Pengenalan Komputer , Andi Offset ,1992.
10.[Muammar. W. K, Ahmad], Laporan Karya Ilmiah “Virtual Local Area Network
sebagai alternatif model jaringan guna peningkatan keamanan dan efisiensi
dalam sebuah local area network ” , Bogor 2002
11.http://net21.ucdavis.edu
12.http://www.cisco.com
13.http://www.tele.sunyit.edu
14.Modul pelatihan Auditing Network Security, Laboratorium Elektronika
dan komponen ITB, 2001.

http://dedenthea.wordpress.com/2007/02/07/apa-itu-vlan-virtual-local-area-network/




PERBEDAAN MENDASAR ANTARA LAN DAN VLAN

Perbedaan yang sangat jelas dari model jaringan Local Area Network dengan Virtual Local Area Network adalah bahwa bentuk jaringan dengan model LocalArea Network sangat bergantung pada letak/fisik dari workstation, serta penggunaan hub dan repeater sebagai perangkat jaringan yang memiliki beberapa kelemahan. Sedangkan yang menjadi salah satu kelebihan dari model jaringan dengan VLAN adalah bahwa tiap-tiap workstation/user yang tergabung dalam satu VLAN/bagian (organisasi, kelompok dsb) dapat tetap saling berhubunganwalaupun terpisah secara fisik. Atau lebih jelas lagi akan dapat kita lihat perbedaan LAN dan VLAN pada gambar dibawah ini.

Gambar konfigurasi LAN

[hub]-[1]-[1]-[1] <– lan 1/di lantai 1
|
[x]–[hub]-[2]-[2]-[2] <– lan 2/di lantai 2
|
[hub]-[3]-[3]-[3] <– lan 3/di lantai 3

Gambar konfigurasi VLAN

vlan2.gif

Terlihat jelas VLAN telah merubah batasan fisik yang selama ini tidak dapat
diatasi oleh LAN. Keuntungan inilah yang diharapkan dapat memberikan
kemudahan-kemudahan baik secara teknis dan operasional.

http://dedenthea.wordpress.com/2007/02/07/apa-itu-vlan-virtual-local-area-network/

TIPE TIPE VLAN

Keanggotaan dalam suatu VLAN dapat di klasifikasikan berdasarkan port yang di gunakan , MAC address, tipe protokol.

1. Berdasarkan Port

Keanggotaan pada suatu VLAN dapat di dasarkan pada port yang di gunakan oleh VLAN tersebut. Sebagai contoh, pada bridge/switch dengan 4 port, port 1, 2, dan 4 merupakan VLAN 1 sedang port 3 dimiliki oleh VLAN 2, lihat tabel:

Tabel port dan VLAN

Port 1 2 3 4
VLAN 2 2 1 2

Kelemahannya adalah user tidak bisa untuk berpindah pindah, apabila harus berpindah maka Network administrator harus mengkonfigurasikan ulang.

2. Berdasarkan MAC Address

Keanggotaan suatu VLAN didasarkan pada MAC address dari setiap workstation /komputer yang dimiliki oleh user. Switch mendeteksi/mencatat semua MAC address yang dimiliki oleh setiap Virtual LAN. MAC address merupakan suatu bagian yang dimiliki oleh NIC (Network Interface Card) di setiap workstation.
Kelebihannya apabila user berpindah pindah maka dia akan tetap terkonfigurasi sebagai anggota dari VLAN tersebut.Sedangkan kekurangannya bahwa setiap mesin harus di konfigurasikan secara manual , dan untuk jaringan yang memiliki ratusan workstation maka tipe ini kurang efissien untuk dilakukan.

Tabel MAC address dan VLAN

MAC address 132516617738 272389579355 536666337777 24444125556
VLAN 1 2 2 1

3. Berdasarkan tipe protokol yang digunakan

Keanggotaan VLAN juga bisa berdasarkan protocol yang digunakan, lihat tabel

Tabel Protokol dan VLAN

Protokol IP IPX
VLAN 1 2

4. Berdasarkan Alamat Subnet IP

Subnet IP address pada suatu jaringan juga dapat digunakan untuk mengklasifikasi suatu VLAN

Tabel IP Subnet dan VLAN

IP subnet 22.3.24 46.20.45
VLAN 1 2

Konfigurasi ini tidak berhubungan dengan routing pada jaringan dan juga tidak mempermasalahkan funggsi router.IP address digunakan untuk memetakan keanggotaan
VLAN.Keuntungannya seorang user tidak perlu mengkonfigurasikan ulang alamatnya di jaringan apabila berpindah tempat, hanya saja karena bekerja di layer yang lebih tinggi maka akan sedikit lebih lambat untuk meneruskan paket di banding menggunakan MAC addresses.

5. Berdasarkan aplikasi atau kombinasi lain

Sangat dimungkinkan untuk menentukan suatu VLAN berdasarkan aplikasi yang dijalankan, atau kombinasi dari semua tipe di atas untuk diterapkan pada suatu jaringan. Misalkan: aplikasi FTP (file transfer protocol) hanya bias digunakan oleh VLAN 1 dan Telnet hanya bisa digunakan pada VLAN 2.

http://dedenthea.wordpress.com/2007/02/07/apa-itu-vlan-virtual-local-area-network/

Vlan (Virtual Local Area Network)

PENGANTAR

Pemanfaatan teknologi jaringan komputer sebagai media komunikasi data hingga
saat ini semakin meningkat. Kebutuhan atas penggunaan bersama resources yang
ada dalam jaringan baik software maupun hardware telah mengakibatkan timbulnya
berbagai pengembangan teknologi jaringan itu sendiri. Seiring dengan semakin
tingginya tingkat kebutuhan dan semakin banyaknya pengguna jaringan yang
menginginkan suatu bentuk jaringan yang dapat memberikan hasil maksimal baik
dari segi efisiensi maupun peningkatan keamanan jaringan itu sendiri.
Berlandaskan pada keinginan-keinginan tersebut, maka upaya-upaya penyempurnaan
terus dilakukan oleh berbagai pihak. Dengan memanfaatkan berbagai tekhnik
khususnya teknik subnetting dan penggunaan hardware yang lebih baik
(antara lain switch) maka muncullah konsep Virtual Local Area Network (VLAN)
yang diharapkan dapat memberikan hasil yang lebih baik dibanding
Local area Network (LAN).

PENGERTIAN

VLAN merupakan suatu model jaringan yang tidak terbatas pada lokasi fisik
seperti LAN , hal ini mengakibatkan suatu network dapat dikonfigurasi secara
virtual tanpa harus menuruti lokasi fisik peralatan. Penggunaan VLAN akan
membuat pengaturan jaringan menjadi sangat fleksibel dimana dapat dibuat
segmen yang bergantung pada organisasi atau departemen, tanpa bergantung pada
lokasi workstation seperti pada gambar dibawah ini

Gambar Jaringan VLAN

vlan1.gif

BAGAIMANA VLAN BEKERJA

VLAN diklasifikasikan berdasarkan metode (tipe) yang digunakan untuk
mengklasifikasikannya, baik menggunakan port, MAC addresses dsb. Semua
informasi yang mengandung penandaan/pengalamatan suatu vlan (tagging)
di simpan dalam suatu database (tabel), jika penandaannya berdasarkan
port yang digunakan maka database harus mengindikasikan port-port yang
digunakan oleh VLAN. Untuk mengaturnya maka biasanya digunakan
switch/bridge yang manageable atau yang bisa di atur. Switch/bridge
inilah yang bertanggung jawab menyimpan semua informasi dan konfigurasi
suatu VLAN dan dipastikan semua switch/bridge memiliki informasi yang sama.
Switch akan menentukan kemana data-data akan diteruskan dan sebagainya.
atau dapat pula digunakan suatu software pengalamatan (bridging software)
yang berfungsi mencatat/menandai suatu VLAN beserta workstation yang
didalamnya.untuk menghubungkan antar VLAN dibutuhkan router.

http://dedenthea.wordpress.com/2007/02/07/apa-itu-vlan-virtual-local-area-network/


Cisco Router Configuration Commands

Requirement Cisco Command
Set a console password to cisco Router(config)#line con 0
Router(config-line)#login
Router(config-line)#password cisco
Set a telnet password Router(config)#line vty 0 4
Router(config-line)#login
Router(config-line)#password cisco
Stop console timing out Router(config)#line con 0
Router(config-line)#exec-timeout 0 0
Set the enable password to cisco Router(config)#enable password cisco
Set the enable secret password to peter. This password overrides the enable password and is encypted within the config file Router(config)#enable secret peter
Enable an interface Router(config-if)#no shutdown
To disable an interface Router(config-if)#shutdown
Set the clock rate for a router with a DCE cable to 64K Router(config-if)clock rate 64000
Set a logical bandwidth assignment of 64K to the serial interface Router(config-if)bandwidth 64
Note that the zeroes are not missing
To add an IP address to a interface Router(config-if)#ip addr 10.1.1.1 255.255.255.0
To enable RIP on all 172.16.x.y interfaces Router(config)#router rip
Router(config-router)#network 172.16.0.0
Disable RIP Router(config)#no router rip
To enable IRGP with a AS of 200, to all interfaces Router(config)#router igrp 200
Router(config-router)#network 172.16.0.0
Disable IGRP Router(config)#no router igrp 200
Static route the remote network is 172.16.1.0, with a mask of 255.255.255.0, the next hop is 172.16.2.1, at a cost of 5 hops Router(config)#ip route 172.16.1.0 255.255.255.0 172.16.2.1 5
Disable CDP for the whole router Router(config)#no cdp run
Enable CDP for he whole router Router(config)#cdp run
Disable CDP on an interface Router(config-if)#no cdp enable

Sumber : http://tomax7.com/index.html

Cisco Router Show Commands

Requirement

Cisco Command
View version information show version
View current configuration (DRAM) show running-config
View startup configuration (NVRAM) show startup-config
Show IOS file and flash space show flash
Shows all logs that the router has in its memory show log
View the interface status of interface e0 show interface e0
Overview all interfaces on the router show ip interfaces brief
View type of serial cable on s0 show controllers 0 (note the space between the ’s’ and the ‘0′)
Display a summary of connected cdp devices show cdp neighbor
Display detailed information on all devices show cdp entry *
Display current routing protocols show ip protocols
Display IP routing table show ip route
Display access lists, this includes the number of displayed matches show access-lists
Check the router can see the ISDN switch show isdn status
Check a Frame Relay PVC connections show frame-relay pvc
show lmi traffic stats show frame-relay lmi
Display the frame inverse ARP table show frame-relay map

Cisco Router Basic Operations

Requirement

Cisco Command
Enable Enter privileged mode
Return to user mode from privileged disable
Exit Router Logout or exit or quit
Recall last command up arrow or
Recall next command down arrow or
Suspend or abort and and 6 then x
Refresh screen output
Compleat Command TAB


Cisco Router Copy Commands

Requirement

Cisco Command
Save the current configuration from DRAM to NVRAM copy running-config startup-config
Merge NVRAM configuration to DRAM copy startup-config running-config
Copy DRAM configuration to a TFTP server copy runing-config tftp
Merge TFTP configuration with current router configuration held in DRAM copy tftp runing-config
Backup the IOS onto a TFTP server copy flash tftp
Upgrade the router IOS from a TFTP server copy tftp flash

Cisco Router Debug Commands

Requirement

Cisco Command
Enable debug for RIP debug ip rip
Enable summary IGRP debug information debug ip igrp events
Enable detailed IGRP debug information debug ip igrp transactions
Debug IPX RIP debug ipx routing activity
Debug IPX SAP debug IPX SAP
Enable debug for CHAP or PAP debug ppp authentication
Switch all debugging off no debug all
undebug all

Sumber : http://dedenthea.wordpress.com/2007/03/12/cisco-router-configuration-commands/

Monitor dan Memblok Trafik Virus Pada Cisco Router

Pengantar

Router merupakan sebuah device yang berfungsi untuk meneruskan paket-paket dari sebuah network ke network yang lainnya (baik LAN ke LAN atau LAN ke WAN) sehingga host-host yang ada pada sebuah network bisa berkomunikasi dengan host-host yang ada pada network yang lain. Router menghubungkan network-network tersebut pada network layer dari model OSI, sehingga secara teknis Router adalah Layer 3 Gateway.

Selain itu juga router dapat menangkap dan melihat aktivitas trafik dalam jaringan, sehingga memudahkan kita untuk mengklasifikasikan trafik dan membuang paket-paket yang tidak diperlukan.

Berkembangnya virus-virus komputer yang sangat cepat, cukup merugikan para penyedia jaringan dan pengguna komputer. Serangan virus ini telah banyak mengkonsumsi bandwidth sehingga trafik aplikasi yang sebenarnya tidak bisa dilewatkan melalui jaringan karena jaringan telah dipenuhi oleh paket-paket virus.

Berikut ini tulisan yang menyajikan cara memonitor trafik dan memblok paket virus dengan menggunakan router Cisco.

Untuk menampung semua trafik yang keluar masuk, harus dibuatkan tempat yang biasanya disebut log.

Pada router cisco, buffer log tidak aktfi secara default. Oleh karena itu kita harus mengaktifkannya sebelum menampung trafik yang akan kita lihat.

Cara mengaktifkan log buffer pada Router Cisco:

Router(config)# logging buffered 4096
Router(config)# exit

Angka 4096 mempunyai satuan bytes, jadi tempat/memori yang disediakan untuk menangkat trafik sebesar 4096 Bytes. Setelah itu, kita membuat profile untuk menangkap trafik dengan menggunakan Access Control List (ACL) extended.

Contoh :

Konfigurasi access-list 101

Router# config t
Router(config)# access-list 101 permit icmp any any log
Router(config)# access-list 101 permit tcp any any gt 0 log
Router(config)# access-list 101 permit udp any any gt 0 log
Router(config)# access-list 101 permit ip any any log

Pengertian permit berarti semua paket (icmp, tcp, udp, ip) diijinkan lewat Selanjutnya terapkan Access-List yang sudah dibuat pada interface yang akan kita tangkap trafiknya. Misal kita ingin menangkap trafik yang masuk ke port Fast Ethernet 0 : (dapat diterapkan di semua interface, seperti : E0, S0, S1.1, S2/0.1, ATM0/0.1, dll)

Router(config)# int fa0
Router(config-if)# ip access-group 101 in
Router(config-if)# exit

Agar hasil log dapat terlihat Tanggal dan Jam-nya, maka harus dikonfigurasi sebagai berikut:

Router(config)# service timestamps log datetime localtime
Router(config)# exit
Router#clock set 14:00:00 17 May 2004

Setelah selesai, kita dapat melihat semua trafik yang masuk ke Fast Ethernet 0:

Perintah yang digunakan adalah : show log

Router#show logMay 17 14:02:38: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 172.21.0.182(1019) -> 192.168.134.82(515), 2 packets

May 17 14:02:44: %SEC-6-IPACCESSLOGDP: list 101 permitted icmp 192.168.134.2 -> 192.168.134.42 (3/13), 6 packets

May 17 14:02:44: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 172.21.0.182(1019) -> 192.168.134.43(515), 1 packet

May 17 14:03:03: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 172.21.0.155(1014) -> 192.168.134.67(515), 2 packets

May 17 14:03:05: %SEC-6-IPACCESSLOGP: list 101 permitted tcp 172.21.0.182(1005) -> 192.168.134.67(515), 2 packets

Dari data trafik baris pertama di atas, paket tcp port 1019 dengan IP 172.21.0.182 masuk ke port Fast Ethernet 0 dengan tujuan IP 192.168.134.82 menggunakan port 515 sebanyak 2 paket, terjadi pada tanggal 17 May 2004 jam 14:02:38. Dari data trafik baris pertama di atas, paket tcp port 1019 dengan IP 172.21.0.182 masuk ke port Fast Ethernet 0 dengan tujuan IP 192.168.134.82 menggunakan port 515 sebanyak 2 paket, terjadi pada tanggal 17 May 2004 jam 14:02:38.Dari data trafik baris pertama di atas, paket tcp port 1019 dengan IP 172.21.0.182 masuk ke port Fast Ethernet 0 dengan tujuan IP 192.168.134.82 menggunakan port 515 sebanyak 2 paket, terjadi pada tanggal 17 May 2004 jam 14:02:38.Untuk melihat throughput atau utilisasi pada interface Fast Ethernet 0, dapat menggunakan perintah:

Router# sho int fa0

.
5 minute input rate 11264000 bits/sec, 2378 packets/sec
5 minute output rate 5203000 bits/sec, 3060 packets/sec
……

Virus Jaringan

PC yang terkena virus akan selalu mengirimkan paket-paket ke jaringan dalam jumlah besar dalam waktu singkat. Jika pada saat kita menangkap trafik pada suatu interface, terdapat pola paket yang sangat banyak dan menggunakan port TCP, UDP atau ICMP yang sama, kemungkinan jaringan ini terkena virus.

Berikut contoh-contoh paket virus dalam jaringan : Salah satu jenis Virus Blaster menggunakan TCP port 135, virus ini dapat memenuhi jaringan dan menyebabkan aplikasi di jaringan menjadi lambat atau bahkan hang. Paket ini akan terus memenuhi jaringan walaupun kondisi komputer sedang tidak melakukan aktivitas.

May 19 14:25:48: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2865) -> 129.74.248.15(135), 1 packet

May 19 14:25:49: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4283) -> 10.239.97.117(135), 1 packet

May 19 14:25:50: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2897) -> 129.74.248.47(135), 1 packet

May 19 14:25:51: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3832) -> 166.58.195.45(135), 1 packet

May 19 14:25:52: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.68(2189) -> 68.44.91.87(135), 1 packet

May 19 14:25:53: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3864) -> 166.58.195.77(135), 1 packet

May 19 14:25:54: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4335) -> 10.239.97.167(135), 1 packet

May 19 14:25:55: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2947) -> 129.74.248.97(135), 1 packet

May 19 14:25:56: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4369) -> 10.239.97.199(135), 1 packet

May 19 14:25:57: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.68(2239) -> 68.44.91.137(135), 1 packet

May 19 14:25:58: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3914) -> 166.58.195.127(135), 1 packet

Jenis Virus Blaster yang lain menggunakan TCP port 445, 139 dan UDP port 137 (ada juga yang menggunakan port 138, tetapi tidak ditampilkan di sini)

May 25 15:46:46: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2774) -> 64.120.84.40(445), 1 packet

May 25 15:46:47: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2776) -> 64.120.84.41(445), 1 packet

May 25 15:46:48: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2778) -> 64.120.84.42(445), 1 packet

May 25 15:46:49: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2780) -> 64.120.84.43(445), 1 packet

May 25 15:46:50: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2782) -> 64.120.84.44(445), 1 packet

May 25 15:46:51: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2784) -> 64.120.84.45(445), 1 packet

May 25 15:46:52: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2787) -> 64.120.84.46(139), 1 packet

May 25 15:46:53: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2789) -> 64.120.84.47(139), 1 packet

May 25 15:46:54: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2790) -> 64.120.84.48(445), 1 packet

May 25 15:46:55: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2792) -> 64.120.84.49(445), 1 packet

May 25 15:46:56: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2794) -> 64.120.84.50(445), 1 packet

May 25 15:48:06: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2922) -> 64.120.84.111(139), 1 packet

May 25 15:48:07: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2924) -> 64.120.84.112(139), 1 packet

May 25 15:48:08: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2940) -> 64.120.84.119(139), 1 packet

May 25 15:48:10: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2944) -> 64.120.84.121(139), 1 packet

May 25 15:48:11: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2952) -> 64.120.84.125(445), 1 packet

May 25 15:48:12: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2955) -> 64.120.84.126(139), 1 packet

May 25 15:48:13: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2956) -> 64.120.84.127(445), 1 packet

May 25 15:48:14: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2959) -> 64.120.84.128(139), 1 packet

May 25 15:48:15: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2962) -> 64.120.84.129(139), 1 packet

May 25 15:48:16: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2964) -> 64.120.84.130(139), 1 packet

May 25 15:48:17: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2966) -> 64.120.84.131(139), 1 packet

May 25 15:48:18: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2968) -> 64.120.84.132(139), 1 packet

May 25 15:48:19: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2970) -> 64.120.84.133(139), 1 packet

May 25 15:48:21: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2974) -> 64.120.84.135(139), 1 packet

May 25 15:48:22: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2976) -> 64.120.84.136(139), 1 packet

May 25 15:48:23: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2978) -> 64.120.84.137(139), 1 packet

May 25 15:48:24: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2981) -> 64.120.84.138(139), 1 packet

May 25 15:48:25: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2984) -> 64.120.84.139(139), 1 packet

May 25 15:48:26: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2985) -> 64.120.84.140(445), 1 packet

May 25 15:48:27: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2979) -> 64.120.84.138(445), 1 packet

May 25 15:48:28: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2984) -> 64.120.84.139(139), 1 packet

May 25 15:48:29: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2992) -> 64.120.84.143(139), 1 packet

May 25 15:48:30: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2974) -> 64.120.84.135(139), 1 packet

May 25 15:48:32: %SEC-6-IPACCESSLOGP: list 107 permitted tcp 202.152.18.230(2978) -> 64.120.84.137(139), 1 packet

May 18 16:20:48: %SEC-6-IPACCESSLOGP: list 104 permited udp 10.49.100.230(1028) -> 19.135.133.55(137), 1 packet

May 18 16:20:49: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.12.124(4616) -> 10.14.44.151(445), 1 packet

May 18 16:20:50: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.148.98(2979) -> 10.49.181.197(445), 1 packet

May 18 16:20:51: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.20.116(4176) -> 10.49.239.149(445), 1 packet

May 18 16:20:52: %SEC-6-IPACCESSLOGP: list 104 permited udp 10.49.18.195(1030) -> 139.64.66.76(137), 1 packet

May 18 16:20:53: %SEC-6-IPACCESSLOGP: list 104 permited udp 10.49.12.34(1027) -> 120.134.165.57(137), 1 packet

May 18 16:20:54: %SEC-6-IPACCESSLOGP: list 104 permited udp 10.49.6.35(1031) -> 3.151.81.106(137), 1 packet

May 18 16:20:55: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.20.115(3517) -> 10.49.217.164(445), 1 packet

May 18 16:20:56: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.2.131(1903) -> 10.174.107.77(445), 1 packet

May 18 16:20:57: %SEC-6-IPACCESSLOGP: list 104 permited tcp 10.49.22.68(4704) -> 10.57.51.106(445), 1 packet

May 18 16:20:58: %SEC-6-IPACCESSLOGP: list 104 permited udp 10.49.5.99(1027) -> 132.70.123.242(137), 1 packet

May 19 14:25:48: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2865) -> 129.74.248.15(135), 1 packet

May 19 14:25:49: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4283) -> 10.239.97.117(135), 1 packet

May 19 14:25:50: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2897) -> 129.74.248.47(135), 1 packet

May 19 14:25:51: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3832) -> 166.58.195.45(135), 1 packet

May 19 14:25:52: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.68(2189) -> 68.44.91.87(135), 1 packet

May 19 14:25:53: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3864) -> 166.58.195.77(135), 1 packet

May 19 14:25:54: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4335) -> 10.239.97.167(135), 1 packet

May 19 14:25:55: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.69(2947) -> 129.74.248.97(135), 1 packet

May 19 14:25:56: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.66(4369) -> 10.239.97.199(135), 1 packet

May 19 14:25:57: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.68(2239) -> 68.44.91.137(135), 1 packet

May 19 14:25:58: %SEC-6-IPACCESSLOGP: list 102 permitted tcp 10.236.48.70(3914) -> 166.58.195.127(135), 1 packet

Paket Virus Welchia/Nachi:

Oct 22 10:59:50: %SEC-6-IPACCESSLOGDP: list 101 permitted icmp 202.152.13.98 -> 192.170.211.87 (8/0), 1 packet

Oct 22 10:59:51: %SEC-6-IPACCESSLOGDP: list 101 permitted icmp 202.152.13.98 -> 192.170.211.248 (8/0), 1 packet

Oct 22 10:59:52: %SEC-6-IPACCESSLOGDP: list 101 permitted icmp 202.152.13.98 -> 192.170.212.186 (8/0), 1 packet

Oct 22 10:59:53: %SEC-6-IPACCESSLOGDP: list 101 permitted icmp 202.152.13.98 -> 192.170.213.46 (8/0), 1 packet

Dengan menggunakan Router kita dapat memblok paket-paket tersebut diatas agar tidak menulari jaringan yang lain atau memenuhi jaringan WAN. Bloking paket virus dilakukan di sisi router pada interface yang paling dekat dengan keberadaan jaringan yang bervirus. Contoh cara melakukan Bloking Paket pada virus Blaster yang menggunakan TCP port 445 dan UDP port 137 adalah dengan menggunakan Access Control List (ACL) sebagai berikut :

Router# config t
Router(config)# access-list 104 deny tcp any any eq 445 log
Router(config)# access-list 104 deny udp any any eq 137 log
Router(config)# access-list 104 permit ip any any

Catatan : Jangan lupa di akhir command untuk selalu memasang permit ip any any , setelah anda melakukan bloking dengan perintah deny. Jika anda tidak memasang permit ip any any, maka semua paket akan diblok. Selanjutnya kita pasang access-list 104 di atas, pada interface tempat masuknya virus, misal di interface ethernet0:

Router(config)# int e0
Router(config-if)#ip access-group 104 in
Router(config-if)# exit

Untuk melihat hasilnya adalah sebagai berikut :

Router# sho log

May 18 16:21:08: %SEC-6-IPACCESSLOGP: list 104 denied udp 169.254.166.50(137) -> 169.254.255.255(137), 1 packet

May 18 16:21:09: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.151.68(1339) -> 10.49.35.78(445), 1 packet

May 18 16:21:10: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.100.230(1028) -> 4.71.4.82(137), 1 packet

May 18 16:21:11: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.19.130(1027) -> 46.33.60.237(137), 1 packet

May 18 16:21:12: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.7.194(1028) -> 140.120.202.83(137), 1 packet

May 18 16:21:13: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.15.132(3882) -> 10.74.93.59(445), 1 packet

May 18 16:21:14: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.20.115(3562) -> 185.142.133.192(445), 1 packet

May 18 16:21:15: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.12.124(3058) -> 10.228.79.203(445), 1 packet

May 18 16:21:16: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.12.40(3571) -> 31.7.189.248(445), 1 packet

May 18 16:21:17: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.13.130(1026) -> 14.0.106.191(137), 1 packet

May 18 16:21:18: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.15.99(1029) -> 62.178.109.147(137), 1 packet

May 18 16:21:19: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.8.105(1027) -> 144.203.127.85(137), 1 packet

May 18 16:21:20: %SEC-6-IPACCESSLOGP: list 104 denied udp 10.49.8.6(1027) -> 119.123.155.124(137), 1 packet

May 18 16:21:21: %SEC-6-IPACCESSLOGP: list 104 denied tcp 10.49.20.116(4314) -> 17.101.32.39(445), 1 packet

Terlihat bahwa semua paket yang menggunakan TCP port 445 dan UDP port 137 akan di Deny (blok).Terlihat bahwa semua paket yang menggunakan TCP port 445 dan UDP port 137 akan di Deny (blok). Hal ini sangat bermanfaat jika jaringan kita menggunakan WAN.

Terlihat bahwa semua paket yang menggunakan TCP port 445 dan UDP port 137 akan di Deny (blok).Hal ini sangat bermanfaat jika jaringan kita menggunakan WAN.Misal kita menggunakan WAN Frame Relay dengan kecepatan 64 Kbps. Jika suatu LAN 100 Mbps di remote terkena virus seperti diatas, maka semua paket virus ini akan menyebar dan masuk ke WAN yang mempunyai kecepatan hanya 64 Kbps. Dapat dibayangkan pasti jaringan WAN yang 64 kbps ini akan penuh, dan user-user di remote tidak akan bisa melakukan hubungan ke jaringan pusat.

Dengan dilakukan bloking seperti cara di atas, maka jaringan WAN 64 Kbps ini akan bersih dan tetap terjaga pemakaian bandwidthnya.

Selamat mencoba!!!

Sumber : http://dedenthea.wordpress.com/2007/02/04/